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Abstract
This paper explores potential symmetries of the nonlinear wave equation
utt = (uux)x , as well as related new similarity reductions and exact solutions of
this equation. New approximate solutions of the perturbed nonlinear equations
stemming from the exact solutions of the equation are obtained by applying a
new approach to the use of the Lie group technique for differential equations
dependent on a small parameter. In addition, some nonlinear wave equations
exactly reducible to the equation utt = (uux)x are constructed using this
approach.

PACS numbers: 0220Q, 0545, 0230

1. Introduction

Lie group theory provides a powerful tool for obtaining analytical solutions of a large class
of partial differential equations (PDEs). The most effective and universal method designed
for this purpose is the symmetry reduction procedure (see, e.g., [1, 2]). The invariance
of a PDE (or a system of PDEs) under a Lie group of point transformations is used to
construct special solutions, which are invariant under some subgroup of the full group admitted
by the equation (similarity or invariant solutions). The conditional symmetry approach
(nonclassical method, [3,4]) may be applied to enlarge the class of solutions obtainable by the
symmetry reduction method. Additionally, new solutions, not obtainable through the classical
and nonclassical Lie algorithms, may be arrived at by developing certain generalizations
of the nonclassical method (e.g., [5–8]). The classical Lie group method based on the
invariance of PDEs under point transformations (point symmetries) can be further extended
by considering the invariance under contact transformations (contact symmetries) and Lie–
Bäcklund transformations (Lie–Bäcklund symmetries) (see, e.g., [1]). Combinations of these
extended symmetries with the conditional symmetry approach are also possible (e.g., [9,10]).
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Recently, Bluman et al [1,11,12] introduced a method for finding a new class of symmetries
for a system of PDEs for the case where at least one of the PDEs can be written in a conserved
form. These new potential symmetries, determined as point (or Lie–Bäcklund) symmetries of
the associated auxiliary system arising from conserved forms by the introduction of additional
(potential) variables, are nonlocal symmetries of the original PDEs whose infinitesimals depend
on the integrals of the original dependent variables (potentials). A potential symmetry enables
the construction of solutions of the original system of PDEs which cannot be obtained as
invariant solutions of its local symmetries.

The purpose of this paper was threefold.
First we wished to explore the potential symmetries and related new exact solutions of the

equation

utt = (uux)x (1.1)

which arises in several different physical contexts (e.g., longitudinal wave propagation on a
moving threadline, electromagnetic transmission line, transonic equation [13], dynamics of a
finite nonlinear string [14]).

The second objective of this paper was to develop a new approach to the use of the Lie
group technique for differential equations depending on a small parameter. Our aim was to be
able to construct equations that could be reduced by exact transformations to an unperturbed
equation and at the same time would coincide approximately (within some range of the
equation parameter) with the initial (perturbed) equation. The new method differs conceptually
from the symmetry group methods outlined above. The central concept underpinning the
latter is the symmetry of the equation, which is defined as a group of transformations that
leaves the equation invariant and consequently maps any solution to another solution of the
equation. Our approach does away with the invariance requirement while using the Lie
group machinery. For a perturbed differential equation depending on a small parameter ε, the
invariance requirement is replaced by the requirement that the unperturbed equation transform
infinitesimally (for small values of the group parameter a) into the perturbed equation with
ε = a. The infinitesimal Lie technique modified with this requirement yields determining
equations for the group generators that differ from those of the symmetry group method. The
corresponding infinitesimal transformations map any solution of the unperturbed equation
to an approximate (valid up to first order in ε) solution of the perturbed equation. The finite
transformations defined on the basis of the group generators, as a solution of the corresponding
Cauchy problem, are used to arrive at a new equation depending on the group parameter a.
This equation, which for a = ε � 1 coincides with the original perturbed equation, can
be converted into the unperturbed equation by the exact transformation. Thus, the method
developed allows: (i) extending any solution of the unperturbed equation to the approximate
solution of the perturbed equation, and (ii) finding new integrable equations that have (at least,
in some parameter interval) a definite physical meaning.

Several symmetry based perturbation methods have been developed recently. The
approach developed in a series of papers by Baikov et al (see, e.g., [15, 16]), referred to
as the approximate symmetry group method, represents a perturbation technique embedded
into the standard procedure of the classical Lie group method. The approach developed by
Fushchich and Shtelen [17] combines a common perturbation technique with the symmetry
group method: at the first stage, a perturbation technique is applied to approximately replace
the original equations by the system of equations for the zero- and first-order parts, after which,
at the second stage, the usual symmetry group method is applied to obtain solutions of this
coupled system. Both methods [15] and [17] are based on the symmetry of the equations, so
that the invariance requirement (the approximate invariance of the original equation in [15]
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and the exact invariance of the system approximating the original equation in [17]) is a central
feature of the methods. Thus, our method, in which the invariance is replaced by another
requirement, differs conceptually from [15] and [17].

Discovering related differential equations, one with a definite physical meaning and
the other of simpler form—which was another goal of our method—also figures among
applications of symmetry methods to differential equations. It is usually implemented by
comparing the symmetry groups of a given differential equation and another differential
equation (target equation) [1]; here the symmetry of the equations again plays a central role.
Our method, on the other hand, operates on the Lie group of transformations that do not leave
equations invariant but transform one equation into another.

The third objective of this paper was to apply the approach described above to perturbed
nonlinear wave equations having equation (1.1) as an unperturbed part. We have found new
approximate solutions of the perturbed nonlinear wave equations, in particular, solutions
stemming from the exact solutions of equation (1.1) defined in this paper via potential
symmetries. As another result of applying the new method we have constructed some nonlinear
wave equations that are reducible to equation (1.1) by exact transformations and at the same
time coincide approximately with the initial perturbed equations.

The paper is organized as follows.
In section 2, we study potential symmetries of equation (1.1) and define related similarity

solutions. In section 3, we develop the new approach to use the Lie group technique for
differential equations depending on a small parameter. In section 4, the new approach is
applied to some nonlinear perturbed equations having equation (1.1) as an unperturbed part.
New approximate solutions of these perturbed equations are obtained and some nonlinear wave
equations exactly reducible to equation (1.1) are constructed as a result of application of the
approach. Section 5 contains comments on the approach developed and prospects for future
work.

2. Potential symmetries of equation (1.1) and related exact solutions

In [1] Bluman and Kumei describe the method to enlarge the classes of symmetries of
differential equations. By writing a given PDE R{x, t, u} in a conserved form an auxiliary
system S{x, t, u, v} with potentials v as auxiliary variables is constructed. Any Lie group of
point transformations admitted by S{x, t, u, v} induces a symmetry admitted byR{x, t, u}, and
if at least one of the infinitesimals of variables (x, t, u) of S{x, t, u, v} depends explicitly on v,
then the corresponding symmetry of R{x, t, u} is a potential (nonlocal) symmetry which is not
a point symmetry ofR{x, t, u}. This, in particular, enables one to construct solutions of a given
PDE R{x, t, u}, which cannot be obtained as invariant solutions of its local symmetries, since,
in general, invariant solutions of S{x, t, u, v} arising from its point symmetries yield solutions
of R{x, t, u} that are not invariant solutions of any point symmetry admitted by R{x, t, u}.
Another application of potential symmetries is their use in the linearization of nonlinear PDEs
by a non-invertible mapping.

In order to find the potential symmetries of equation (1.1) we write it in a conserved form

Dx(F ) − Dt(G) = 0 (2.1)

where

F = uux G = ut . (2.2)

The associated auxiliary system S{x, t, u, v} is given by

vx = ut vt = uux. (2.3)
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A Lie point symmetry admitted by S{x, t, u, v} is a symmetry characterized by an infinitesimal
generator of the form

X = ξ(x, t, u, v)
∂

∂x
+ τ(x, t, u, v)

∂

∂t
+ φ1(x, t, u, v)

∂

∂u
+ φ2(x, t, u, v)

∂

∂v
. (2.4)

The associated Lie algebra is infinite-dimensional and it is spanned by

X1 = (xv + tu2)
∂

∂x
+ (xu + 2tv)

∂

∂t
− 2uv

∂

∂u
−

(
2

3
u3 +

3

2
v2

)
∂

∂v

X2 = x
∂

∂x
+ t

∂

∂t
X3 = ∂

∂x
X4 = − t

2

∂

∂t
+ u

∂

∂u
+

3

2
v
∂

∂v

X5 = ∂

∂t
X6 = ∂

∂v
X∞ = f (u, v)

∂

∂u
+ g(u, v)

∂

∂v

(2.5)

where the functions f (u, v) and g(u, v) satisfy the equations

fu − ugv = 0 fv − gu = 0. (2.6)

The infinitesimal operators X2, X3, X4, X5, X6 are projectable to the space (x, t, u) and X2,
X3, X4, X5 projects onto point symmetries of (1.1). The infinitesimal operators X1 and X∞
are not projectable; they define the desired potential symmetries.

The operatorX∞ generates an infinite-parameter group (subgroup) of transformations and
thus leads to the invertible mapping for the system (2.3) which in turn leads to the non-invertible
mapping of (1.1). Employing the procedure for determining such invertible mappings given
in [1] (theorems 6.4.1-1 and 6.4.1-2) leads to the hodograph transformation:

z1 = u z2 = v W1 = x W2 = t (2.7a)
∂W1

∂z2
− ∂W2

∂z1
= 0

∂W1

∂z1
− z1

∂W2

∂z2
= 0. (2.7b)

As in the case of point symmetries, potential symmetries may be used to derive similarity
reductions (solutions) of the initial equation R{x, t, u}. We will investigate similarity
reductions associated with the point symmetry X1 of (2.3) which is a potential symmetry
of (1.1). The corresponding characteristic equations can be written as

dx

xv + tu2
= dt

xu + 2tv
= − du

2uv
= − dv

2
3u

3 + 3
2v

2
. (2.8)

If we introduce the new variables

q = u3/2 λ = u1/2x − ut µ = u1/2x + ut (2.9)

then solving the transformed characteristic equations yields the following three similarity
variables

ϑ = λµ = ux2 − u2t2 (2.10)

and

w1 = 9

16

v2

q
− q

4
w2 = µ2

4
(2q + 3v + 4w1). (2.11)

Solving equations (2.11) for q and v and treating ϑ as an independent variable and w1 and w2

as functions of ϑ , we obtain the similarity reduction in the form

q = 1

w2(ϑ)

(
w2(ϑ)

µ
− w1(ϑ)µ

)2

v = 2

3w2(ϑ)

(
w2(ϑ)

2

µ2
− w1(ϑ)

2µ2

)
(2.12)

where µ and ϑ are defined by (2.9) and (2.10).
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To obtain the corresponding system of ODEs for the functions w1(ϑ) and w2(ϑ) one has
to substitute this similarity form into the original system of equations (2.3). That, however,
will entail a very complicated algebra since both the similarity variable (2.10) and the right-
hand sides of the forms (2.12) include the dependent variable u. Simplifications are achieved
if we transform the original equations (2.3) to the variables q, v, λ and µ. After lengthy
but straightforward calculations we arrive at the system of equations for q(λ, µ) and v(λ, µ)

replacing the original system (2.3) in the form

q[(3v + 2q)λ + (3v − 2q)µ] + 2(λ − µ)(vλqµ − vµqλ) = 0 (2.13a)

q[(3v − 2q)µ − (3v + 2q)λ] + (λ + µ)(vλqµ − vµqλ) = 0. (2.13b)

Substituting the reduction (2.12) into equations (2.13) leads to the system of equations for
w1(ϑ) and w2(ϑ) in the form

w′
2 − 1

3ϑw
′
1 = 0 (2.14a)

ϑ

(
w2

1

w2

)′
+ 2

(
w2

1

w2

)
− 1

3
w′

1 = 0 (2.14b)

where primes indicate derivatives with respect to ϑ . This system is readily solved to give

w1 = Iϑ−1(w2
2 + b1w2)

1/2 I = ±1 (2.15a)

and

ϑ = b2(w
2
2 + b1w2)

1/2

[
w2 +

b1

2
+ (w2

2 + b1w2)
1/2

]−3I

(2.15b)

where b1 and b2 are constants and I = 1 and −1 correspond to two different solutions.
In addition, there exists a solution not covered by (2.15), namely

w1 = 0 w2 = b2 = const. (2.16)

However, the corresponding solution of (1.1) given by u = b0(x +
√
ut)−4/5 is not of interest,

since it is a particular case of solutions obtained by considering characteristic curves of
equation (1.1).

The relations (2.15a) and (2.15b) together with (2.12), (2.9) and (2.10) define the two
(I = ±1) solutions of equation (1.1) in a parametric form with w2 being a parameter. The
parameter w2 is eliminated with the use of (2.15a) and the first relation of (2.12) to obtain

w2 = µ2q

(µ2 − λ2)2

[
λ2 + I

(
λ2µ2 − b1

µ2 − λ2

q

)1/2
]2

. (2.17)

Substituting (2.9) and (2.10) into (2.17) and (2.15b) after some algebra yields

ux2 − u2t2 = b2αβ

(
α2 +

b1

2
+ αβ

)−3I

(2.18a)

where {
α

β

}
=

∣∣∣∣ 1

4u1/4xt
(x ± u1/2t)[(u1/2x ∓ ut)2 + R]

∣∣∣∣
R = I [(ux2 − u2t2)2 − 4b1xt]

1/2.

(2.18b)

The relations (2.18) define two families (I = ±1) of the implicit form solutions of
equation (1.1) depending on two arbitrary constants b1 and b2. It is seen from (2.18b) that
b1 should be negative. Note that the solutions can be enriched by using the point symmetries
of (1.1); in particular, t and x can be replaced by t + t0 and x + x0 (where t0 and x0 are arbitrary
constants) to avoid singularities in the initial and boundary conditions.
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The particular cases of solutions (2.18) corresponding to b1 = 0 can be represented as

x2 = ut2 + K

(
t

u

)4/5

(I = 1) (2.19)

and

t2 = x2

u
− C

( x

u2

)8/7
(I = −1) (2.20)

where K and C are constants (K = (2b2)
1/5, C = (b2/32)−1/7). The formulae (2.19)

and (2.20) may be also obtained straight from equations (2.15) and (2.12). It is worth noting
here that despite the fact that the derivation of the solutions for the general case b1 �= 0 relies
on the use of variables including

√
u and therefore its validness is restricted by the domain of

hyperbolicity of (1.1) u > 0, the solutions (2.19) and (2.20) not containing
√
u are also valid

in the domain u < 0.
It is pointed out in [18] that a wider class of solutions may be obtained by direct introduction

of the similarity form for u into the original equation. However, due to the structure of the
similarity form, defined by the first relation of (2.12) together with (2.9) and (2.10), that
includes the dependent variable u through both µ and the similarity variable ϑ , substitution
of (2.12) into (1.1) involves a tedious algebra which is virtually unmanageable even with
symbolic manipulation programs. One might expect that a progress could be achieved by
using the variables q, λ and µ instead of u, x and t . However, the overdetermined system
of four ODEs for two functions w1(ϑ) and w2(ϑ), obtained by substituting the first relation
of (2.12) into equation (1.1) transformed to the variables q, λ and µ is still too complicated to
find closed-form solutions.

The solutions (2.18)–(2.20) found in this section with the use of the potential symmetry
associated with the generator X1 represent new exact closed-form solutions of the initial
equation (1.1) These solutions are not obtainable by the use of the point symmetries of
equation (1.1). They do not figure among solutions invariant under conditional symmetries
considered in [19]. They, being obtained via the potential symmetry X1, differ from the
solutions found in [18] with the use of the potential symmetry X = X2 + X∞ with f = v and
g = u. They cannot be obtained by the direct method of Clarkson and Kruskal [20] or by its
recent extensions [21–23], since all these methods start from similarity forms, in which the
independent similarity variable ϑ does not depend on u.

In conclusion of this section, we will make some comments on the possible usefulness of
the solutions found. As it was mentioned above, the wave equation (1.1) arises in a number
of different physical contexts. It is also of interest in that it represents one of the simplest
examples of a class of nonlinear hyperbolic PDEs displaying the ‘blow-up’ phenomenon,
which usually manifests itself by derivatives of u of a certain order becoming infinite at some
point x. Equations (2.18)–(2.20), which include arbitrary parameters, in point of fact, describe
a variety of solutions. Depending on a choice of parameters (which also specifies the initial
data), they can produce both globally smooth solutions and solutions with the first derivative
ux becoming infinite at some point, while u itself stays finite. The solutions are also applicable
after the time when the singularity forms; they describe propagating discontinuities at which
ux is infinite but u is finite. These exact solutions can help provide an understanding of
the complicated phenomena which is difficult to achieve with the use of a numerical method.
They differ in this respect from many other analytical solutions of the nonlinear wave equations
obtained by the symmetry group methods—mainly due to the fact that they include u into both
the dependent and the independent similarity variables, which provides more possibilities for
describing complicated features.
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The exact solutions of equation (1.1) found in this section are used in section 4 for
constructing new approximate solutions of the perturbed nonlinear wave equations.

3. A new approach to the use of the Lie group technique for differential equations with
a small parameter

We will consider a kth-order scalar differential equation depending on a small parameter ε,
namely

((z, u(1), u(2), . . . , u(k); ε) = (0(z, u(1), u(2), . . . , u(k)) + ε(1(z, u(1), u(2), . . . , u(k)) = 0.

(3.1)

We use the following notation: z = (x, u) = (x1, x2, . . . , xn, u) denotes the vector, in which
x = (x1, x2, . . . , xn) are n independent variables and u is the dependent variable, and u(j)
denotes the set of all j th-order partial derivatives of u with respect to x.

The approach developed allows, in particular, finding approximate solutions of such
equations. Some symmetry based perturbation methods have been developed recently to find
approximate solutions of nonlinear differential equations. To show the difference between
those methods and our approach we will outline the approximate symmetry group method due
to Baikov et al [15,16] and the approximate symmetry approach of Fushchich and Shtelen [17]
before presenting our approach.

3.1. The symmetry based perturbation methods

In the approximate symmetry group method of Baikov et al [15], the one-parameter (a) Lie
group of transformations

z∗ = F(z; ε; a) ≈ F0(z; a) + εF1(z; a) (3.2)

depending on a small parameter ε is considered. Let

X = ζ(z; ε) ∂
∂z

≈ X0 + εX1 ζ(z; ε) ≈ ζ0(z) + εζ1(z) (3.3a)

ζ = (ξ, η) = (ξ 1, ξ 2, . . . , ξn, η) (3.3b)

be the infinitesimal generator of (3.2). Then the transformations (3.2) form an approximate
symmetry group of equation (3.1) if

X(k)((z, u(1), u(2), . . . , u(k); ε)|(=O(ε2) = O(ε2) (3.4)

where

X(k) ≈ X
(k)
0 + εX

(k)
1 (3.5)

is the kth extended infinitesimal generator of (3.3). If in (3.3) the generator X0 �= 0, it
represents an exact symmetry of the unperturbed equation (0 = 0 but, in general, not any
operator X0 admitted by the unperturbed equation is inherited by the perturbed equation. The
approximate invariant solutions are constructed from the approximate similarity variables
obtained by solving (up to first order in ε) the approximate characteristic equations

dx1

ξ 1
0 (x, u) + εξ 1

1 (x, u)
= · · · = dxn

ξn0 (x, u) + εξn1 (x, u)
= du

η0(x, u) + εη1(x, u)
. (3.6)

Thus, the approximate symmetry group method represents a perturbation technique embedded
into the standard procedure of the classical Lie group symmetry method.
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The approach developed by Fushchich and Shtelen in [17] to obtain approximate solutions
of the perturbed nonlinear wave equation represents another combination of a common
perturbation technique with the symmetry group method. It starts with applying a perturbation
technique to reduce the original equation (3.1) to the coupled system of equations for the
zero-order and first-order parts of the solution, as follows:

u = w + εv (3.7)

(0(z, w(1), w(2), . . . , w(k)) = 0

N(w, v) + (1(z, w(1), w(2), . . . , w(k)) = 0
(3.8)

where N(w, v) is the linear (with respect to v) part of (0(z, u(1), u(2), . . . , u(k)). Next the
symmetry method is applied to the coupled system (3.8). Thus, in this approach, an exact
symmetry of the system approximating the original perturbed equation in the first order of
precision is referred to as a first-order approximate symmetry of the original equation.

3.2. A new approach

The main points of the new approach are:

(i) The one-parameter (a) Lie group of transformations

z∗ = f (z; a) (3.9a)

X = ζ(z)
∂

∂z
(3.9b)

is applied to the unperturbed equation (0 = 0 written in the variables u∗, x∗ and t∗ as

(0(z
∗, u∗

(1), . . . , u
∗
(k)) = 0 (3.10)

which, as the result, is transformed to

(̃0(z, u(1), . . . , u(k); a) = 0 (3.11)

or infinitesimally

(0(z
∗, u∗

(1), . . . , u
∗
(k)) = (0(z, u(1), . . . , u(k)) + aX(k)(0(z, u(1), . . . , u(k))|(0=0 + O(a2)

(a � 1) (3.12)

where X(k) is the kth extended infinitesimal generator of (3.9b).
(ii) The invariance requirement is replaced by the requirement that the unperturbed

equation (3.10) transform infinitesimally (for small values of the group parameter a)
into the perturbed equation (3.1) with ε = a. This requirement may be expressed as

X(k)(0(z, u(1), . . . , u(k))|(0=0 = (1(z, u(1), . . . , u(k)). (3.13)

It yields determining equations for the group generators ζ = (ξ, η).
(iii) Having the group generators defined, the finite transformations (3.9a) are determined as

a solution of the Cauchy problem

df (z; a)
da

= ζ(f ) f (z; 0) = z. (3.14)

These transformations are used in (3.10) to define a new equation (3.11), which, in view of (i)
and (ii), possesses the following two properties:

(a) When a � 1, equation (3.11) coincides with the initial perturbed equation (3.1) up to first
order in a = ε:

(̃0(z, u(1), . . . , u(k); a) = (0(z, u(1), . . . , u(k)) + a(1(z, u(1), . . . , u(k)) + O(a2). (3.15)
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(b) There exists the exact transformation z = f (z∗,−a) (inverse to (3.9a)) that converts
equation (3.11) into the unperturbed equation (3.10). Therefore any exact solution of the
unperturbed equation yields the exact solution of equation (3.11).

If an exact solution u∗ = .(x∗) of the unperturbed equation (3.10) is known, the
approximate solution u(x) of the perturbed equation (3.1) can be obtained by introducing
the infinitesimal transformations into the solution .(x∗), as follows:

u(x) + εη(x, u(x)) = .(x + εξ(x, u(x))) (3.16)

with subsequent expanding of the result up to first order in ε. Equally, this approximate solution
can be obtained from the corresponding exact solution of the new equation (3.11) by expanding
it up to first order in a and replacing a by ε afterwards.

Thus, the new approach allows one:

(i) To extend any solution of the unperturbed equation to the approximate solution of
the perturbed equation. This, in general, provides more possibilities for constructing
approximate solutions than an application of the approximate group method—see
discussion in the next section.

(ii) To construct equations that on the one hand are integrable (if the unperturbed equation is
integrable), and on the other hand have solutions with some prescribed (at least, in some
parameter interval) features.

In the next section we use the approach to obtain approximate solutions of the perturbed
nonlinear wave equations, that have equation (1.1) as the unperturbed part, and to construct
some nonlinear wave equations that can be reduced to (1.1) by an exact transformation.

4. Perturbed nonlinear wave equations

4.1. An example of application of the approach

We will start from the perturbed nonlinear wave equation of the form

utt + εut = (uux)x (4.1)

which arises from one-dimensional gas dynamics [13], longitudinal wave propagation on a
moving threadline [14] and one-dimensional wave propagation in nonlinear, rate-dependent
materials [24]. The approximate classical symmetries of equation (4.1) and the corresponding
approximate solutions were discussed by Baikov et al [15]. Solutions of equation (4.1) obtained
by the extension of the approximate symmetry group method to conditional symmetries were
considered in [25].

Following the approach described in section 3.2, we consider the one-parameter (a) Lie
group of point transformations

x∗ = f (x, t, u; a) t∗ = g(x, t, u; a) u∗ = h(x, t, u; a) (4.2a)

X = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
(4.2b)

which convert the unperturbed equation

(0(x
∗, t∗, u∗) = u∗

t∗t∗ − (u∗u∗
x∗)x∗ = 0 (4.3)

into another equation (̃0(x, t, u; a) = 0, such that

(̃0(z, t, u; a) = {utt − (uux)x} + a{rut } + O(a2) (a � 1) (4.4)
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where r is a trace coefficient. The generators of such a group are determined from the
requirement (3.13) which results in the determining equations for ξ , τ and η having the
following solutions:

ξ = c4x + c2

τ = c3t + c1 − r
t2

10
η = 2u(c4 − c3) + r 2

5ut

(4.5)

where c1, c2, c3 and c4 are arbitrary constants and the trace coefficient r marks terms additional
to those of the symmetry group of equation (4.3).

Next, we will determine the finite transformations (4.2a) generated by (4.2b) with ξ , τ
and η including only the r-terms of (4.5). Solving the corresponding Cauchy problem

dg(t, u; a)
da

= −g2

10

dh(t, u; a)
da

= 2

5
gh g(t, u; 0) = t h(t, u; 0) = u (4.6)

we obtain the transformations in the form

x∗ = x t∗ = t

(
1 +

at

10

)−1

u∗ = u

(
1 +

at

10

)4

. (4.7)

Substituting (4.7) into (4.3) yields

(̃0(x, t, u; a) = utt − (uux)x +
a

1 + at
10

ut +
1

5

a2

(1 + at
10 )

2
u = 0. (4.8)

It is seen that the transformed equation (4.8) has the property defined by (4.4): for
a = ε � 1 it coincides with the original equation (4.1) up to first order in a. At the same time,
the exact solutions of equation (4.8) can be obtained from exact solutions of the unperturbed
equation (4.3) by the transformation inverse to (4.7). Other forms of this equation possessing
the same properties can be easily obtained from (4.8) by applying additional transformations
simplifying (4.8) as, for example

Uθθ + aUθ + 6
25a

2U = (UUx)x (4.9a)

where

U(x, θ) = 4

(
1 +

at

10

)2

u(x, t) θ = 5

a
ln

(
1 +

at

10

)
(4.9b)

or

vππ +
a

1 + 3aπ
5

vπ = (vvx)x (4.10a)

where

v(x, π) = 16

(
1 +

at

10

)5

u(x, t) π = 5

3a

[(
1 +

at

10

)−3/2

− 1

]
. (4.10b)

For smalla = ε, these equations differ from (4.1) by the terms of the order of ε2: equation (4.9a)
by the source term and equation (4.10a) by the additional time-dependent term in the coefficient
of the perturbation.
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4.2. Approximate solutions of equation (4.1)

First, we will consider approximate solutions of (4.1) originating from the classical point
symmetries of the unperturbed equation (1.1) which will enable us to compare tools for
constructing approximate solutions provided by our approach and by the approximate classical
symmetry group method of Baikov et al [15]. (It is worth noting here that the applications of
Baikov et al’s approach are not restricted in finding approximate solutions—they also include
calculating approximate conservation laws and approximate symmetry groups of PDEs.) The
classical point symmetries of equation (1.1) are represented by (refer to (4.5) for r = 0):

X
(0)
1 = ∂

∂t
X

(0)
2 = ∂

∂x
X

(0)
3 = t

∂

∂t
− 2u

∂

∂u
X

(0)
4 = x

∂

∂x
+ 2u

∂

∂u
. (4.11)

The approximate solutions obtainable by Baikov et al’s method [15] are the invariant
solutions based on the approximate symmetries of equation (4.1). Applying the approximate
symmetry group method to (4.1) yields two approximate symmetries, one of which coincides
with the exact symmetry X

(0)
4 of this and unperturbed equations, and another one is

X
(A)
3 =

(
t + ε

t2

10

)
∂

∂t
− 2u

(
1 + ε

t

5

)
∂

∂u
(4.12)

which is a stable symmetry inherited from X
(0)
3 . The approximate similarity variables

constructed from (3.6) with the generator (4.12) are

ϑ = x w = ut2

(
1 + ε

t

5

)
(4.13)

so that the approximate invariant solution is

u = t−2
(

1 − ε

5
t
)
w(x) (4.14a)

where w(x) satisfies the equation

(ww′)′ = 6w. (4.14b)

The ε = 0 counterpart of (4.14) given by

u = t−2w(x) (4.15)

with w(x) satisfying the same equation (4.14b), represents the invariant solution of the
unperturbed equation (1.1) corresponding to the unperturbed part X(0)

3 of the symmetry X
(A)
3 .

Note that other possible invariant solutions of the unperturbed equation are of no use here and
thus do not lead to approximate solutions of the perturbed equation.

Let us show first that the same approximate solution (4.14) of equation (4.1) is obtained
by applying our approach with the invariant solution (4.15) of the unperturbed equation (1.1)
used as a source. To apply the transformations found in section 4.1, we have first to rewrite
the source solution (4.15) in variables with stars as

u∗ = (t∗)−2w(x∗). (4.16)

Then we may use in (4.16) the infinitesimal transformations corresponding to the
generators (4.5) with ε replacing a, as follows:

u∗ ≈ u
(
1 + ε 2

5 t
)

t∗ ≈ t − ε
t2

10
x∗ = x (4.17a)

(we have taken only the r-terms in the generators), which gives

u

(
1 + ε

2

5
t

)
=

(
t − ε

t2

10

)−2

w(x). (4.17b)
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Solving this for u and expanding the result up to first order in ε yields the solution (4.14).
Equally the finite transformations (4.7) might be used in (4.16) to obtain u in the form

u = t−2

(
1 +

at

10

)−2

w(x) (4.18)

(it represents the exact solution of equation (4.8)), which turns into (4.14) for small a = ε.
While the approximate symmetry group approach produces only the approximate

invariant solution (4.14), which is based on the sole approximate symmetry of the perturbed
equation (4.1) inherited from the symmetries of the unperturbed equation, our approach allows
one to use other symmetries of the unperturbed equation for producing the approximate
solutions of (4.1) from the corresponding invariant solutions of (1.1). Let us take, as an
example, the symmetry

X = c1X
(0)
1 + c2X

(0)
2 = c1

∂

∂t
+ c2

∂

∂x
(4.19)

which leads to the invariant solution of (1.1) of the form

u = w(ϑ) ϑ = x − Ct (C = c2/c1) (4.20a)

C2w′′ = (ww′)′. (4.20b)

Applying either the infinitesimal (4.17a) or the corresponding finite (4.7) transformations to
the solution (4.20a) (written with u∗ and t∗ replacing u and t) and expanding the result up to
first order in a = ε � 1 produces the approximate solution of equation (4.1) in the form

u = (1 − 2
5εt)w(ϑ) ϑ = x − Ct +

εCt2

10
(4.21)

where w(ϑ) satisfies the same equation (4.20b).
In general, one can construct approximate solutions of equation (4.1) using any solution of

equation (1.1)—for example, a conditional invariant solution. The conditional symmetries of
equation (1.1) were considered in [19]. We will take, as an example, the conditional symmetry
with the generator

V2,2 = ∂

∂t
+ C1t

∂

∂x
+ 2C2

1 t
∂

∂u
(4.22)

where C1 is a constant. The symmetry (4.22) leads to the invariant conditional solution of
equation (1.1) having the following form:

u = C2
1 t

2 + w(z) ϑ = x − 1
2C1t

2 (4.23a)

(ww′)′ = 2C2
1 − C1w

′ (4.23b)

which was discussed in [19,26]. Our approach allows one to construct the approximate solution
of equation (4.1) by applying the infinitesimal transformations with the generators (4.5) to the
solution (4.23) (rewritten in variables with stars). If we take the generators including, in
addition to the r-terms, the c1- and c3-terms, the transformations will be

u∗ ≈ u

[
1 + ε

(
−2c3 +

2t

5

)]
t∗ ≈ t + ε

(
c1 + c3t − t2

10

)
x∗ = x (4.24)

which leads to the approximate solution of the form

u = C2
1 t

2 + w(ϑ) + ε[2c1C
2
1 t + 4c3C

2
1 t

2 − 3
5C

2
1 t

3 + (2c3 − 2
5 t)w(ϑ)]

ϑ = x − 1
2C1t

2 − ε(c1C1t + c3C1t
2 − 1

10C1t
3)

(4.25)

where w(ϑ) satisfies equation (4.23b). It is readily verified that the solution (4.25) satisfies
equation (4.1) in the first order of precision.
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Let now consider some of the approximate solutions of the perturbed nonlinear wave
equation (4.1) obtained by applying our approach to the new exact solutions of equation (1.1)
that were found in section 2 via potential symmetries. Introducing the transformation (4.17a)
into (2.18) rewritten in variables with stars and expanding the result up to first order in a and
subsequently replacing a by ε yields

ux2 − u2t2 ≈ b2αβ

(
α2 +

b1

2
+ αβ

)−3

+ εt

{
3u2t2 − 2ux2

+
b2

5

[
2(α2 − 6αβ + β2)

(α + β)6

(
9ux2 − 13u2t2

R
− 1

)]}
(I = 1) (4.26)

and

ux2 − u2t2 ≈ b2αβ

(
α2 +

b1

2
+ αβ

)3

+ εt

{
3u2t2 − 2ux2

+
b2

5

[
(α + β)6(α2 + 6αβ + β2)

32

(
9ux2 − 13u2t2

R
− 1

)]}
(I = −1)

(4.27)

where α, β and R are defined by (2.18b). Each of equations (4.26) and (4.27) defines a family
of approximate solutions of equation (4.1) depending on two arbitrary constants b1 and b2.

Next, we will obtain the approximate solutions of equation (4.1) by introducing the
transformation (4.24) into (2.19) and (2.20) which yields

x2 ≈ ut2 + K

(
t

u

)4/5

+
ε

5

[
2K

(
t − 6c3 − 2

c1

t

) (
t

u

)4/5

− ut(10c1 + t2)

]
(4.28)

and

t2 ≈ x2

u
− C

( x

u2

)8/7
+
ε

5

[
32

7
C(5c3 − t)

(
x

u2

)8/7

+ 10t (c1 + c3t) − t3 +
2x2

u
(t − 5c3)

]
(4.29)

where K , C, c1 and c2 are arbitrary constants Each of equations (4.28) and (4.29) defines a
family of solutions depending on three arbitrary constants.

Note that in the case when the source solutions of the unperturbed equation are in an
implicit (or complicated) form, so that some auxiliary calculations are needed to get an idea of
how the solutions of the unperturbed equation behave (e.g., to solve a transcendental equation
in the case of the solutions (2.18)–(2.20)), the natural way to study the corresponding solutions
of the perturbed equation is simply to implement the same calculations with the transformed
variables without writing out the perturbed solution.

We will also make remarks about the possible usefulness of the approximate solutions
of equation (4.1) obtained in this section. First of all, the solutions (4.26)–(4.29) enable us
to study, in a specific physical context, the influence of the effects related to the perturbation
term upon the phenomena described by the unperturbed solutions (2.18)–(2.20). For example,
in the context of the dynamics and wave propagation of nonlinear dissipative Maxwellian
materials [24], the perturbation term in (4.1) may be regarded as the result of incorporating
the effects of the relaxation of stress. Then, from the analysis of the approximate solutions
of (4.1) stemming from the solutions of (1.1) that describe the propagating discontinuities, it is
seen that the effects of the stress relaxation result in a delay of the discontinuity development,
lowering the value of u at the discontinuity (at which ux is infinite) and decreasing the speed
of the discontinuity propagation. It should also be remarked upon a general usefulness of
the transformations from the unperturbed to perturbed equation that are defined as a result of
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application of the method. Determining these transformations can be considered as finding
some generalized approximate solution to a given perturbed equation since they provide a
possibility to built an approximate solution from any solution of the unperturbed equation
and their forms do not depend on the form of the source solution. As a matter of fact,
even a numerical solution of the unperturbed equation can be used as a source to obtain
the corresponding approximate solution of the perturbed equation by the transformation of
variables.

4.3. Other perturbed equations

The approach developed can be applied to other perturbed nonlinear wave equations, that are
more complicated than (4.1), as, for example, the following:

utt + ε[k0ut + k1uux + k2uxt + k3(uux)t ] = (uux)x (4.30)

where k0, k1, k2 and k3 are constants. One may find approximate solutions of (4.30) using the
infinitesimal transformations with the generators

ξ = c4x + c2 − k1
x2

14
− k2

t

2

τ = c3t + c1 + k3
x

2
− k0

t2

10
η = 2u(c4 − c3) + k0

2
5ut − k1

2
7ux

(4.31)

and one may use the corresponding finite transformations to construct the equations that
coincide with (4.30) for small a = ε and are reducible to (1.1) by exact transformations.
Considering, as an example, the perturbed equation of the form (4.30) with k0 = k1 = 1 and
k2 = k3 = 0, we arrive at a new equation, which (after an additional transformation similar
to (4.10)) differs from the perturbed equation by the source term proportional to a2, namely

Uθθ + a(Uθ + UUχ) + a2( 6
25U − 6

49U
2) = (UUχ)χ . (4.32)

Solutions of this equation are related to solutions of equation (4.3) by

u∗ = U(χ, θ)e2a(θ/5−χ/7) x∗ = 14

a
(1 − e−aχ/7) t∗ = 10

a
(1 − e−aθ/5). (4.33)

5. Discussion

In this paper we have investigated the potential symmetries of the nonlinear wave equation (1.1)
and corresponding invariant solutions. Despite the complicated structure of the similarity
variables we succeeded in determining closed-form solutions of the related ODEs and finding
new classes of exact solutions of equation (4.1) this way.

Further we have presented a new approach to the use of the Lie group technique for
differential equations depending on a small parameter. As a result, we have found new
approximate solutions of the perturbed nonlinear wave equations, in particular, those stemming
from the exact solutions of the unperturbed equation defined via potential symmetries.
As another result of applying the new method we have constructed some nonlinear wave
equations that can be reduced to the unperturbed equation by exact transformations and
that approximately, within some range of the equation parameter, coincide with the initial
(perturbed) equation. Below we will make several comments on the method developed.

First, we will comment on the new method versus the standard perturbation technique.
As distinct from the perturbation methods of solving differential equations (see, e.g., [27]),
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our method is aimed at finding transformations between different equations. Correspondingly,
while the perturbation methods involve the straightforward expansion of the dependent variable
inserted into the perturbed equation (sometimes it is accompanied by a transformation of the
independent variables as an artificial device), in our method, the transformations from the
perturbed equation to the unperturbed equation are sought. Which variables are transformed
and in what way is determined by the requirement that the transformations form a Lie group.
These transformations naturally define the approximate solution of the perturbed equation.
Another feature of our method, that should be of interest for the theory of perturbation methods,
is that it produces a new equation, which on the one hand can be transformed to the zero-order
equation by an exact transformation and on the other hand has naturally defined first-order
approximation.

We will also remark upon the relations between our method and a well-known method of
Lie series and transforms of perturbation theory (see [28]). Even though these two methods
might seem to be closely related, they, in fact, apply the Lie group ideas for different purposes.
In perturbation theory, a near identity transformation is introduced and the Lie transforms
(series) are generated to transform a weakly nonlinear (perturbed) system into another weakly
nonlinear system that contains long-period terms only (it provides an elegant and algorithmic
way to implement calculations in the framework of the method of averaging). In our method,
the Lie group technique is used to transform a perturbed equation or system straight into the
unperturbed (not obligatory linear) equation or system.

The next comment concerns application of our method to the perturbed equations in which
the perturbations contain derivatives of a higher order than that of the unperturbed equation—
we will mention, as examples, the well known perturbed Burgers and Korteweg–de Vries
(KdV) equations considered in the context of the asymptotic integrability of physical systems
in a series of papers (see, e.g., [29–32]). To treat such equations, the approach developed in
this paper for point transformations is generalized to include Lie–Bäcklund transformations.
Applying our approach with Lie–Bäcklund transformations to the perturbed Burgers and KdV
equations provides a unifying group-theoretical framework for different results, that were
obtained in [29–32] by using the idea of near identity transformation [33], and can also yield
some new results (they will be a subject of a separate publication). In this context, both the
infinitesimal transformations and new integrable equations produced by the method may be of
interest.

In some cases, application of our method may provide an opportunity to discover
integrability of a given equation. As an example, we will consider the Burgers equation
which, being written in the integrated form with a small parameter ε introduced by rescaling
the dependent variable, is

( = ut − uxx + εu2
x = 0. (5.1)

To apply our method (section 3.2), we are looking for the one-parameter (a) Lie group of point
transformations, which would convert the unperturbed equation written in variables with stars
into another equation coinciding for a = ε � 1 with equation (5.1). Retaining in the group
generators only the terms additional to the symmetry group terms we have

ξ = 0 τ = 0 η = −u2

2
(5.2)

from which the finite transformations are obtained in the form

x∗ = x t∗ = t u∗ = u

1 + a u
2

. (5.3)
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This being substituted into the unperturbed equation gives the new equation

(̃0 = ut − uxx +
a

1 + a u
2

u2
x = 0 (5.4)

which, in accordance with the basic idea of the method, differs for a = ε � 1 from (5.1) by
the terms of the order of ε2. The structure of this equation suggests using the variable 1 +au/2
instead of u to make simplifications, after which it appears that the transformation

1 + a
u

2
= eaρ (5.5)

reduces it to the initial equation. Thus, the inverses of (5.5) and (5.3) define the exact
transformation between the unperturbed, heat conduction equation and perturbed Burgers’
equation which represents the well known Cole–Hopf transformation [34].

Of course this method cannot be systematically used to determine whether an equation
is linearizable. Lie group theory provides a more systematic approach to this question that
has been developed by Kumei and Bluman in [35] (see also [1]). Upon replacing Burger’s
equation by its associated system of the first-order PDEs, the Cole–Hopf transformation is
derived as an application of theorems 6.4.1-1 and 6.4.1-2 of [1]. Lie group theory provides
also a way to discover mapping of a given linear PDE to a specific target PDE by means
of comparing the symmetry groups of these two equations (see, e.g., [1]), which being
applied to the heat conduction and Burgers’ equations leads to the same transformation. We
have presented the above example to show that the method designed for other purposes—
namely, determining approximate solutions of differential equations with a small parameter
and constructing the related integrable equations—may in some cases produce an integrable
equation which coincides with the original perturbed equation.

In conclusion, we note that, besides generalizations of the method to contact and Lie–
Bäcklund transformations, its modifications in the spirit of the nonclassical method are also
possible. No difficulties arise in applying the same approach to ordinary differential equations.
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